Contributions of primate prefrontal cortex and medial temporal lobe to temporal-order memory.

نویسندگان

  • Yuji Naya
  • He Chen
  • Cen Yang
  • Wendy A Suzuki
چکیده

Neuropsychological and neurophysiological studies have emphasized the role of the prefrontal cortex (PFC) in maintaining information about the temporal order of events or items for upcoming actions. However, the medial temporal lobe (MTL) has also been considered critical to bind individual events or items to their temporal context in episodic memory. Here we characterize the contributions of these brain areas by comparing single-unit activity in the dorsal and ventral regions of macaque lateral PFC (d-PFC and v-PFC) with activity in MTL areas including the hippocampus (HPC), entorhinal cortex, and perirhinal cortex (PRC) as well as in area TE during the encoding phase of a temporal-order memory task. The v-PFC cells signaled specific items at particular time periods of the task. By contrast, MTL cortical cells signaled specific items across multiple time periods and discriminated the items between time periods by modulating their firing rates. Analysis of the temporal dynamics of these signals showed that the conjunctive signal of item and temporal-order information in PRC developed earlier than that seen in v-PFC. During the delay interval between the two cue stimuli, while v-PFC provided prominent stimulus-selective delay activity, MTL areas did not. Both regions of PFC and HPC exhibited an incremental timing signal that appeared to represent the continuous passage of time during the encoding phase. However, the incremental timing signal in HPC was more prominent than that observed in PFC. These results suggest that PFC and MTL contribute to the encoding of the integration of item and timing information in distinct ways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli.

Lesions of parahippocampal structures impair performance of delayed matching tasks in nonhuman primates, suggesting a role for these structures in the maintenance of items in working memory and short-term stimulus matching. However, most human functional imaging studies have not shown medial temporal activation during working memory tasks and have primarily focused on functional magnetic resona...

متن کامل

Dissociable contributions of the mid-ventrolateral frontal cortex and the medial temporal lobe system to human memory.

Although the prefrontal cortex and regions of the medial temporal lobe are commonly co-activated in neuroimaging studies, their precise respective contributions to human memory remain unclear. In this event-related fMRI study, conditions requiring volunteers to simply look at pictures of abstract art were compared with conditions in which they were explicitly instructed to remember similar stim...

متن کامل

Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory.

One of the defining features of episodic long-term memory is that it includes information about the temporal context in which an event occurred. Little is known about the regions that support the encoding of temporal information in the human brain, although previous work has suggested a role for the lateral prefrontal cortex (PFC) and medial temporal lobes (MTL). Here we used event-related fMRI...

متن کامل

Cortico-hippocampal systems involved in memory and cognition: the PMAT framework.

In this chapter, we review evidence that the cortical pathways to the hippocampus appear to extend from two large-scale cortical systems: a posterior medial (PM) system that includes the parahippocampal cortex and retrosplenial cortex, and an anterior temporal (AT) system that includes the perirhinal cortex. This "PMAT" framework accounts for differences in the anatomical and functional connect...

متن کامل

Temporal and cerebellar brain regions that support both declarative memory formation and retrieval.

Using event-related fMRI, we scanned young healthy subjects while they memorized real-world photographs and subsequently tried to recognize them within a series of new photographs. We confirmed that activity in the medial temporal lobe (MTL) and inferior prefrontal cortex correlates with declarative memory formation as defined by the subsequent memory effect, stronger responses to subsequently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 51  شماره 

صفحات  -

تاریخ انتشار 2017